The National Institute for Innovation in Manufacturing Biopharmaceuticals

Abstract

Nirrin Technologies is redefining bioprocess monitoring with Atlas[™], an advanced flow cellanalytical platform based High-Precision by powered Tunable Spectroscopy Laser (HPTLS[™]).

sensitivity With the and accuracy of HPLC—but without complex assay development— Atlas™ accelerates process development, enhances process control, and supports transition fully the to automated biomanufacturing.

Introduction

Designed for perfusion cell culture, ultrafiltration/diafiltration (UFDF), buffer preparation, and Atlas[™] chromatography, delivers in-line quantitation of critical process parameters titer, buffer product (e.g., excipient composition, and concentrations). This eliminates the need for offline sampling and reduces process variability.

the Here core We show HPTLS technology of and specific customer use-cases from upstream perfusion culture and downstream UFDF.

Methodology

Spectral characteristics of NIR													
	SECON		TONE				CC	OMBI	NAT	ION	BAI	NDS	
THIRD OV	ERTONE		FI	RST C	VERTO	NE							
CH NH OH CH CH	NH CH	CH	OH NH	6000	SH CH	C=	0 0	Η	NH NH+	CH+(OH	CH	CH+CC	I
λ [μm] 0.7 0.8 0.9	1.0 1.1	1.2 1.3	1.4 1.5	1.6	, 1.7 1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	
Absorbance / sensitivity													
Higher-order transitions, lower probability Sum or difference of fundaments Higher-order transitions, lower probability vibrations, leading to stron absorption absorption						nental nger							
		Qu	antificat	ion &	Linea	rity	-						
Can be nonlinear due to weak transitions						Mor im	More linear absorbance behavior, improving quantitative accuracy						
			Sele	ectivi	ły								
Crowded	spectral regi	ons, causin	g overlap a	mong a	nalytes		More	distinc	t, redı	ucing ir	nterfe	erences	

Laser characteristics

tuning range

Enhancing Bioprocess Monitoring with AtlasTM

Real-Time Flow Cell Analytics for Upstream and Downstream Applications

Larissa Miropolsky and Bryan Hassell, Ph.D. Nirrin Technologies, Billerica, MA

- MEMS-based Fabry-Perot filter capable of tuning 200-300nm • 0.1-1.0 nm spectral width FWHM across entire tuning range
- Proprietary gain chip generates light in the combination band region
 - Full sweep in 100 msec

Nirrin makes the only combination band tunable laser capable of 200-300nm

Inal	• 100X higher power density than broadband	
urce Signal	light source, it yields wider dynamic range	Figur
sion	than other technologies	biore
	 Proprietary wavelength and amplitude 	The f
Noise Level	referencing provides a calibrated spectrum	attad
	with each scan: accurate library transfer	outle
	across systems; best-in-class signal-to-noise	reter
	(SNR) spectrometer currently available (±10	prior
	µAU repeatability across spectrum)	proc

High-Precision Tunable Laser Spectroscopy (HPTLS) targets the combination band region of NIR (2,140–2,350 nm), enabling stronger, more linear absorbance than higher-order overtone regions

or NH + NH

regions

www.nirrin.tech

- **Sugars:** (glucose, sucrose, trehalose etc.). CH stretch + CH bend, OH stretch + deform
- **Amino acids:** (histidine, arginine. etc.), NH + CH (from the amine group and side chain). OH + CH
- <u>**Proteins:**</u> (mAbs). NH groups \rightarrow NH combination bands. Side chains \rightarrow CH + CH, CH + NH, etc.
- **Surfactants:** (PS20, PS80, P188). CH + CH, CH + OH from fatty acid chains and ethoxylated

re 1: A perfusion eactor setup. flow cell is ched to the et of a cell ntion device, to the next cess step.

Figure 2: A TFF setup. Highlighted is the removable flow cell in the retentate line and laser path through the sample via optical windows on the flow cell

Results

Upstream perfusion

Downstream UFDF

Conclusion

Atlas Flow NIR-HPTLS system is a superior PAT tool which is a game changer for a real-time monitoring across the entire development and production process enabling traceable, automated, and repeatable workflow.

Nirrin STD

Nirrin STD

Offline Offline (RP)

Offline Offline (RP)

NIIMBL- Confidential